
ℓ-mer

goodgood

June, 02, 2009

1 initial c = 2ν2/ν1

We compare the c under the 65K E.coli segement with the simulate reads under c0: 1X, 1.5X, 2X,
4X, 6X, 10X, 15X, 20X, where let ℓ=8, L=35, to experiment of the initial c. Remark: the c here is
the effective ℓ-mer coverage, defined as c = N(L − ℓ + 1)/(G − L + 1).
G: genome size
N : number of reads
ℓ: ℓ-mer length.
c0: the reads coverage, defined as c0 = NL/G
so c0 = cL/(L − ℓ + 1) in numeric for G ≫ L.
There are 10 samples for each experiments, and for the large c, the ν1, ν2 become too small to
estimate c, for it may have large fluctuation effect, so we have to estimate with c = kνk/νk−1, to
reduce the fluctuation.

Table 1: Estimate c from the count ν1, ν2 under different reads coverage,

c0 1X 1.5X 2X 4X 6X 10X 15X 20X

ν1 11023 11020.2 7409.6 2444.1 713 55.8 2.6 1.6

ν2 6864 6886 7250.1 4241.7 1794.5 193.1 4.3 1.1

c̄ 1.25 1.25 1.96 3.48 5.07 7.29 3.4 1.3

c̄0 1.56 1.56 2.45 4.35 6.33 9.11 4.25 1.7
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Table 2: intial c from kνk/νk−1 for proper reads coverage

c0 1X 1.5X 2X 4X 6X 10X 15X 20X

formula 2ν2/ν1 2ν2/ν1 2ν2/ν1 3ν3/ν2 5ν5/ν4 8ν8/ν7 12ν12/ν11 15ν15/ν14

c̄ 1.24 1.25 1.96 3.37 5.13 8.22 12.34 15.90

c̄0 1.56 1.56 2.46 4.22 6.41 10.27 15.43 19.88

2 nm distribution and estimation

the nm denote the count of x(w)=m, the distribution of the nm show the following table

Table 3: Distribution of nm count for the 65K segement

m=0 n0 = 30208 m=4 n4 = 1807 m=8 n8 = 55

m=1 n1 = 18676 m=5 n5 = 766 m=9 n9 = 21

m=2 n2 = 9293 m=6 n6 = 342 m=10 n10 = 11

m=3 n3 = 4229 m=7 n7 = 123 m=11 n11 = 5

The result show the Poission assume for the nm distribution is not good enough for the given
ℓ-mer.

Table 4: Cumulative ratio according to the νk, ℓ = 8, c0 = 2X

k ak ak p-value bk bk p-value

k = 11 a11 = −3.061 0.000105 b11 = 14.425 1.82e-05

k = 10 a10 = −2.578 5.31e-07 b10 = 13.635 5.71e-08

k = 9 a9 = −1.637 1.89e-09 b9 = 12.239 5.83e-11

k = 8 a8 = −0.825 2.89e-14 b8 = 10.661 <2e-16

k = 7 a7 = −0.3205 <2e-16 b7 = 8.6380 <2e-16

k = 6 a6 = −0.08561 <2e-16 b6 = 5.85284 <2e-16

k = 5 a5 = −0.01015 4.65e-11 b5 = 2.32009 <2e-16
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Figure 1: histogram of the nm, compare with Poission distribution

Table 5: Cumulative genome cover according to the nm, G=65K, ℓ = 8

m=0 r0 = 0.000 m=4 r4 = 0.884 m=8 r8 = 0.995

m=1 r1 = 0.289 m=5 r5 = 0.943 m=9 r9 = 0.997

m=2 r2 = 0.576 m=6 r6 = 0.974 m=10 r10 = 0.999

m=3 r3 = 0.771 m=7 r7 = 0.988 m=11 r11 = 1.000
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Figure 4: νk distribution, 2X

Table 6: Cumulative ratio according to the νk, ℓ = 8, c0 = 2X

k=0 r0 = 0.000 k=5 r5 = 0.635 k=10 r10 = 0.931 k=15 r15 = 0.989

k=1 r1 = 0.072 k=6 r6 = 0.730 k=11 r11 = 0.952 k=16 r16 = 0.993

k=2 r2 = 0.212 k=7 r7 = 0.804 k=12 r12 = 0.966 k=17 r17 = 0.995

k=3 r3 = 0.370 k=8 r8 = 0.860 k=13 r13 = 0.977 k=18 r18 = 0.997

k=4 r4 = 0.514 k=9 r9 = 0.901 k=14 r14 = 0.984 k=19 r19 = 0.998

4 determine nm from νk
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Table 7: Estimate the c and G from νk

coverage initial c output ĉ output ĉ0 G
∑

(νk − ν̂k)
2/νk real c resolution

2X 4.8 1.71 2.14 60285.6 6.25 1.99 0.001

4X 4.8 2.52 3.15 68504.0 104.3 3.33 0.001

6X 10.0 4.15 5.20 66138.3 359.6 5.23 0.01

10X 10.0 6.48 8.10 73590.1 99.2 9.14 0.01

15X 15.0 9.48 11.85 76443.6 1986.8 13.98 0.01

20X 20.0 12.4 15.5 77874.9 4515.4 18.8 0.01

5 Expectation-maximization Algorithm

We have a density function p(x|θ), we have the likelihood funtion as:

log P (x|θ) = log P (x1, x2, . . . xk|θ) =
∑

k

log P (xi|θ) (1)

=
∑

k

∑

m

P (ym|xi|θ
t) log P (xi, ym|θ) −

∑

k

∑

m

P (ym|xi, θ
t) log(ym|xi, θ) (2)

Q(θ|θt) =
∑

k

∑

m

P (ym|xi, θ
t) log P (xi, ym|θ)

where we have

P (xk|θ) =
∑

m

αmPk,m,θ (3)

P (xk, ym|θ) = αmPk,m,θ (4)

P (ym|xk, θ) =
P (xk, ym|θ)

P (xk|θ)
=

αmPk,m.θ∑
αmPk,m.θ

(5)

and where αm = nm

n
, so we have the Q(θ|θt),

Q(θ|θt) =
∑

k

∑

m

αmPk,m,θt∑
m αmPk,m,θt

log(αmPk,m,θ) (6)

for the M-step, we are going to computes the paramters maximizing the likelihood found on the
E-step

θ(t+1) = arg max
θ

Q(θ|θ(t))

let
∂Q

∂θ
= 0
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so we have
∂Q

∂θ
=

∑

k

∑

m

bk,m[k
1

θ
− m] = 0 (7)

and

θ =

∑
k

∑
m kbk,m∑

k

∑
m mbk,m

(8)

where

bk,m =
αmPk,m,θt∑
m αmPk,m,θt

and for

∑

k

∑

m

kbk,m =
∑

k

∑

m

αmPk,m,θt∑
m αmPk,m,θt

∗ k =
∑

k

k (9)

∑

k

∑

m

mbk,m =
∑

k

∑

m

αmPk,m,θt∑
m αmPk,m,θt

∗ m =
∑

k

∑
m mαmPk,m,θt∑
m αmPk,m,θt

(10)

so we have the θ’s maximum likelihood estimate:

θ =

∑
k k

∑
k

P

m mαmPk,m,θt
P

m αmPk,m,θt

=

∑
k kP (xk)∑
m mαm

(11)

the iterate equation become:

θ(t+1) =

∑
k k

∑
k

P

m mα
(t)
m Pk,m,θt

P

m α
(t)
m Pk,m,θt

=

∑
k kP (xk)∑
m mα

(t)
m

(12)

α(t+1)
m =

∑

k

α
(t)
m Pk,m,θt+1

∑
α

(t)
m Pk,m,θt+1

P (xk) (13)

6 slight modification

observation function we defined an observe fuction,

Oν =
∑

k

(νk − ν̂k)
2

to measure the goodness of fit for the νk, and for the above EM algrithm, we also consider the
value of the Oν , and choose the Oν as small as possible.

skip out local maxima Another technology we improve is to consider a very small random c,
as a disturb during the iteration, and define a sight probability, about 0.0005 in our experiment,
let the c choose randomly, to skip some local maxima.
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Table 8: updated estimate the c and G from νk

coverage output ĉ output ĉ0 G
∑

(νk − ν̂k)
2 Qn

2X 1.62 2.02 63812.2 96.5 78.6

4X 3.25 4.06 63644.9 639.1 139.1

6X 4.81 6.02 64479.0 553.8 190.9

10X 8.01 10.02 64591.7 505.5 234.9

15X 12.0 15.0 64383.1 764.0 184.3

20X 16.0 20.03 64603.8 867.1 381.0

Table 9: more simualte experiment for estimate the c and G from νk

experiment coverage K output ĉ output ĉ0 G
∑

(νk − ν̂k)
2 Qn

rice 5M 50X 15 28.1 35.2 4.93M 17689.7 1575.9

rice 10M 20X 15 11.2 12.9 9.86M 323813 -2445.9

E coli 1,7M 10X 15 6.0 7.5 1.72M 6706.4 -7410.7

more experiment We are do more simulate experiment for the c and G estimate.

haploid and diploid We also simulate the 25X E.coli 65K segment, with diploid mode, without
sequence errors, the estimate result show the G = 130K, c0 = 12.4, the effective is same as the
130K sequences with the haploid mode, so there is the question could we identify the dipoid mode
from the haploid mode in some ways?

7 the influence from the sequencing errors

We begin analysis the sequence errors cases, and we simulate the reads with the program wgsim,
we set the base error rate 0.02, the figure 5 show the difference of νk distribution between the error
containing and the non error containing, with the coverage is 25X. in ideal model, assume the rate
of per base error is α, the reads length is L, and the original k-mer count for the word wi is x(wi),
the word count with error is x′(wi), so the relationship between x′(wi) and x(wi) is

x′(wi) =
∑

x(wj)P (wi|wj)

where
P (wi|wj) = Ck

Lαk(1 − α)L−k ≈ Pois(k, αL)

9
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Figure 5: νk distribution with error and non-errors, 25X

if wi and wj contain k mismatch. Indeed, this framework is not practice, for we have to calculate
an awful matrix inverse, so we have to try other approximate methods. In practice , we use the
real sequencing data, which at first do an error correction stage, then to estimate the genome size
according to its k-mer frequency table.
Experiment 1, ANT genome (error corrected), unknown
K: 25-mer, genome size: 233M, coverage: 2.40, Qn: 254.5, unique K-mer: 226M(96.8%)
Experiment 2, rice 5M simu, 50X
K: 15-mer, genome size: 5.1M, coverage: 48.8, Qn: 1642.9, unique K-mer: 3.9M(76.4%)
Experiment 3, rice 10M simu, 20X
K: 15-mer, genome size: 9.8M, coverage: 20.1, Qn: -441.6, unique K-mer: 7.2M(73.3%)
Indeed, the ANT genome is about 300M, the large bias is mainly cause by the sequencing errors,
and here we notice the difference between objection function Ov and Qn as the maximum likelihood
is much effective when there are sight disturbing, so in this version, we update mainly treate the
Qn then the Ov

the model for sequencing errors Let a random variable Z=X+Y, where X is the variable with
the no sequencing errors, and Y is the variable with the sequencing errors, and as we known the
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above section, the density function of X is

P (X = k) =
∑

m

αmPois(k,mc) (14)

and the density function of the Z can be generate a convolution formula

P (Z = i) =
∑

k

P (X = k)P (Y = i − k) (15)

indeed, the most important thing is to make the sequencing error model clear, is the model can be
treate as the normal distribution?

summary of the tables and figures We return to the above tables and figures and to explain
what the tables and the figures for. the data in Table 1 and Table 2 is to check the initial c for the
iterate begining, and we are test the result on different coverages simulate data, such as under 2X –
20X data, in order to find the proper initial c, and the result show the simplely estimate with 2ν2/ν1

will highly influnced if the coverage is large and thevalue ν2 and ν1 become too small, and table we
improve the c using the kνk/νk−1, the result show if we choose the proper k, the initial c estimate
is good enough, the only problems is how shall we choose this proper k when the unkown c. and in
table 1 and table 2, we notice the symbol c̄ and c̄0, indeed, c̄ = 2ν2/ν1 and c̄0 = c̄L/(L−ℓ+1),there
the L = 35 and ℓ = 8 in both table, and the values of ν2 and ν1 is the means of the 10 samples ν2

and ν1, for this has elimate the sampling disturbing effect.

why look into the {nm} As the initial stage, we have also to initial nm besides the intial c,
in practice, there are two process we have to determined for the nm. First, the upper boundary
number of the m, i.e what is proper for us to choose the largest m, if we choose the approximate
boundary M , where M is the upper boundary of m; second, is nm could be described by a certain
distribution, if so, we could generate a good initial at the beginning.
Table 3 show the ℓ-mer distribution for the E.coli 65K segement, and we notice the M = 11 in this
example, meanwhile table 5 show the cumulative cover ratio for the nm, that rm =

∑m

k knk/G,
where G is the genome size. The table 5 show till m=8, the r8 = 0.995, it is a good enough
approximate for the genome size estimate. Figure 3 show the genome cover ratio curve under 5-11
ℓ-mers, this figure indicate we could control the certain m0 make the rm0 good approximate by
adjust the ℓ-mer value. In the practice, we control the M between 10 to 15, for the nm initiation.

compare with Poission Figure 1, compare the {nm} with the Poission distribution TPois(m, γ),
where T = 4ℓ, γ = G/T , and the figure 1, red line is the nm freqeuncy distribution and the green
line show the Poission estimation, the result show the distribution of {nm} are large bias with
the Poission distribution estimate, which indicate that the ℓ-tuples are not satisfied the e.i.i.d
assumption, they should be described with a n.i.i.d model instead.
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linear regression fittness We then consider the relationship between log(nm) and m, and found
they could regression with a linear,and we test the different ℓ-mer , let ℓ from 5 to 11 under the
2X data, found the large ℓ choose, the better the linear relationship, which indicate that in E.coli
65K segment, the nm frequency followed with exponent law. Table 4 list the regression paramters
a and b, as well as the p-values of these two parameters, which indicate that the ln(nm) could be
describe as a linear equation ln(nm) = am + b. For example, if ℓ = 8, we have nm = e−0.825m+10.661

fit νk from nm Figure 4 show fitness of the νk frequency and the ν ′
k estimate from the nm, the

only purpose is to show the goodness of fit for the νk, which indicate that even in the 2X dataset,
the estimate of νk =

∑
m nmPois(k,mc) is good enough, indeed in latter process, we defined a

obervation function Ov to measure the goodness of the fit.
Table 6, show the cumulative cover ratio for the νk, which indicate what ratio for the

∑
kνk

theamong whole ℓ-mer, where rk =
∑k

i=0 iνi/
∑K

i=0 iνi, where K is the upper boundary for the k
reached, in practice , our ℓ-mer program limit the K upper boundary as 255 for the memory saving,
and this process will show us how chould we choose the upper boundary for a good approximate
estimate for the

∑K

i iνi. For example, ℓ = 8, 2X data, when r15 = 0.989 means when we consider till
15, there arecontain about 0.989 ℓ-mer in the sampling, which make some sense on νk if approximate
is necessary.

three result with alternative terminal condition Table 7, the first iterate result for the c and
G estimate, and we test this result on the simulate 2X, 4X, 6X, 10X, 15X, 20X data respectively,
ℓ = 8, L = 35, and in Table 7, For example, for 2X data, we choose the initial c=4.8 as the intial
input, then iterate to calculate the ck and Gk, if the |ck − ck+1| < δ, the iterate terminal. So the
output ĉ = 1.71, ĉ0 = cL/(L − ℓ + 1) = 1.17 × 35/(35 − 8 + 1) = 2.14, the real c item indicate the
real coverage value for the simulate data, which is 1.99, and the last item resulution is the threshod
value of the δ, where we let the δ = 0.001 for 2X, 4X data, while δ = 0.01 for 6X, 10X and 15X
till Table 8 and Table 9, our program has been updated for a while, there has been more complete in
aspect of EM algorithm deriving, local maxima avoiding and new obversation function as mentioned
in above section. As a example of the Table 8 result, we iterate the c and nm, with the terminal
condition keep the Ov as small as possible, and we also using the slight disturbing during the iterate
to avoid the local opitmal, and the reuslt show the avoid local optimal stategy is more effective
when the coverage is small. Table 9 following the strategy but only do more experiment on rice
5M, 10M and E.coli 1.7M segments.These experiment result the genome size is acceptable but the
coverage estimate are a little bias, by the way, the Qn value is the likelihood ofthe Q(θ|θt)
The last experiment , we begin to consider the sequencing errors and found out that the sequencing
error indeed influncing the genome size esimate seriously, and we also notice the pitfall of the
observation function Ov, which may lost function if the sampling νk is disturbing. So in this
stage, we return the observation function as the make the Qn maxima first then the Ov, and the
experiment rice 5M and 10M result support a good effective, though the error containing still badly
bias the genome estimate.
Figure 5 show the different vk distribution between the error containing and non-error containing
from the simulate program sgwim, which make the base error rate 0.02, and we notice in low
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index, the low ℓ-mer frequencing become much higher in error containing. So till now, an effective
sequencing error elimate model in emerge necessary.

initial {nm} besides the inital c, we have to inital {nm} at the beginning, in our program, we
inital the {nm} with a uniform distribution, which make nm0 = T/M , where T = 4ℓ and M is the
upper boundary of the m. For we have try the SVD technology for the nm initial process, and found
the SVD very easy get the negative value of the nm, even let the M lowwer to 3, and in practice,
we usually fixed the M about 10-12, it is a little unstable for the SVD, so in current version, we
didn’t choose the SVD result for nm initiation.

another method for the initial c determine As the formula νk =
∑

nmPois(k,mc), then we
can next have another formula

c
∂νk

∂c
=

∑
nm

(mc)k

(k − 1)!
e−mc −

∑
nm

(mc)k+1

k!
e−mc

that
cν ′

k(c) = kνk − (k + 1)νk+1 (16)

c2ν ′′
k + cν ′

k = k2νk − (k + 1)(2k + 1)νk+1 + (k + 1)(k + 2)νk+2 (17)

then we noticed when the ν ′
k = 0, the νk will get the extremum, then we could choose the proper

k that make sure the ν ′
k = 0, it’s a better choices.

merge the complementation ℓ-mer in the real data, we notice a read maybe sequenced due
to the the template or due to its complemetation, so we have to consider the ℓ-mer and its com-
plemetation as one type word, for example, the 8-mer aaggctgc and gcagcctt should be recorded
as one word.

further experiment There is also append some experiment on 173K human control bac, and
we test is with wgsim simulate program, as will as the U0 real reads, and the result show the
concide with each other, generate c=48.2 while G=176K, and we also notice the sequencing errors
containing still influence the result mostly.
We also try the error containing model, there is a unconfirmed assumpution that we assume the
errors follows the uniform distribution to each ℓ-mer, that if the error ratio is P , then we have
about total Vm = P

∑
kνk is sequencing errors. The µ = Vm/T , and it is a normal distribution

N(µ, σ2), could we make it clear and support by the data?

8 Estimate genome size with sequencing errors

the effective of the error correlation We begin test the effective the error correlation stage,
and the first experiment are test on the human control bac 50X dataset, first error correlation, then
mapping with SOAP, the statistic result show as follow. The output show the error correction stage
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is quite effectively, the mapped ratio raised significantly, from 75.3% up to 99.8%, which indicate
the most error reads have been removed after the correction stage. Another the effective of the
error correlation stage is the increase of the 0 mismatch reads and reduce the 1 and 2 mismatch
reads, which indicate a replacement process due to word frequency containing.

before error correlation
maximum length: 35
minimum length: 35
reads count: 234718
average length: 35
reads mapped: 176792
mapped ratio: 75.3%
0 mismatch: 139060
1 mismatch: 26998
2 mismatch: 10734

after error correlation
maximum length: 37
minimum length: 28
reads count: 179603
average length: 34.90
reads mapped: 179216
mapped ratio: 99.8%
0 mismatch: 176685
1 mismatch: 2000
2 mismatch: 531

Experiment: human control bac, corrected
OUTPUT: ℓ=15, genome size: 173K, coverage: 35.6, uni k-mer: 139K

model I we now test the error model from the Dr. Zheng’s note section 6:

kνk = (1 − f)kν0
k + δ(k + 1)ν0

k+1, k ≥ 2 (18)

ν1 = (1 − f)ν0
1 + σN (19)

where f the probability that a word become a new word, N =
∑

k kνk, σ = f(1 −
∑

k νk)/4
ℓ,

δ = (f − σ)/(1 − ν0
1/N).

The wgsim program simulate data, 25X, with base error ratio e = 0.02, 15-mer so we have the
parameters as: f = 1 − (1 − e)ℓ = 1 − (1 − 0.02)15 = 0.2614, σ = 0.2609, δ = 0.00047. Next figure
show this simple err model not very fitness in our recent test.

model II Now we return to the equation (15), and also the uniform assumption for the errors,
and the word changes probability f , the errors count distribution P (Y = k) can be derived as

P (Y = k) = Ck
npk(1 − p)n−k = Pois(k, np); (20)

where np = fN/4ℓ. then the no errors count distribution P (X = k) can be described as

P (X = k) =
∑

m

nmPois(k, (1 − f)mc) (21)

so the distribution of random varible Z can be describe as

P (Z = i) =
∑

k

P (X = k)P (Y = i − k) (22)

the output result show mostly is good, but in low frequency region still large bias. In practice, f =
0.2614, ℓ = 15, in the figures (a) and (b), we removed the counting with νk = 0 and νk = 1, for these
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two counting is too large for drawing. And the data show the νm1
1 = 1788840 while νr1

1 = 1518530,
and the νm2

1 = 1788542 while νr2
1 = 1518530. We also notice the slight bias for the model II that,

νm2
2 = 1505.074 , νm2

3 = 62.688, νm2
4 = 228.458, νm2

5 = 675.004, νm2
6 = 1661.978 vs. νr2

2 = 88178,
νr2

3 = 10216, νr2
4 = 3120, νr2

5 = 2100, νr2
6 = 2354. where νm1

k indicate the estimate νk from model II,
while m1 indicate the model I, r1: the real input data for model I, r2: real input data for model II.
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The possible reason for model II’s bias maybe the uniform assumption and the ℓ-tuple are not
so independent in 4ℓ distribution.

running with different initial c We are running the result with different initial c and find out
the result are stable enough for the large changes of the c, where we using the human control bac
simulate no errors reads with ℓ = 15, iterate 5000 times, disturb ratio 0.05.

distribution of nm & zipf’s law From the figure 1 and the equation (20), we notice the poission
distribution estimate are not so proper for the word frequency distribution describing. And in
linguistic fields, there are an empirical law, zipf’s law, refers to the fact that many types of data

studied in the physical and social sciences can be approximated with a Zipfian distribution. It could
be describe as

f(k; s,N) =
1/ks

∑N

n=1(1/n
s)

(23)
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Table 10: running the result with different initial c

initial c genome size output c uni k-mer Qn
0.01 167.9K 35.6 150.2K 526.6

G0.05 167.9K 33.7 150.2K 448.6
5 176.0K 35.1 137.2K 508.4
15 167.8K 36.4 150.2K 540.3

1000 167.7K 35.5 150.3K 533.4
5000 168.3K 33.6 150.0K 458.4

There are also some relative key words for zipf’s law, such as Yule-Simon distribution, harmonic

series, Riemann zeta function.

Estimate ν0
k from νk We noticed the distribution of νk, find most error distorted ℓ-mer are very

low frequency, less than 5, though the exact distribution of the error ℓ-mer are difficult, we improve
our EM models to estimate the ν0

k in [1, 5] and then approximate treate ν0
k = νk when k > 5. So

we update the iterate equation (12), that

θ(t+1) =

∑
k≤5 ν̂0

k +
∑

k>5 νk

∑
m mn

(t)
m

(24)

where ν̂0
k =

∑
m n

(t)
m Pk,m,θ.

Experiment: human control bac, 0.02 base error ratio, simu
ℓ = 15, genome size 167.5K, coverage: 19.1, uni-kmer: 150.6K

Figure 6 show the estimate of νk and ν0
k , compare with the no error containing counting. From

figure 6, the dark line show the real counting with the distort tuples, the blue line is the estimate
line, fit the νk, k > 5 and estimate the ν0

k when k ≤ 5 while red line indicate we adjust the effec-
tive coverage, to recover these distort tuples into no distort ones, so the effective coverage become
c0 = c/(1 − f), then compare the recover distribution with the real no errors situation, ν0

k (green
line), and the result show these curve are match well. The low frequency ℓ−mer: 874K, total
ℓ-mer: 3.43M, the estimate f = 0.2546. (the theory f = 0.2614), the effective ce = 20.3 and the
true coverage estimate: c0 = 25.4 compare the real data coverage 25X.

νk with ℓ Figure 7 show the nuk distribution with the different ℓ-mer length (ℓ = 7, 9, 11, 13, 15),
and we simulate the no error data 25X for test, treating each pair reverse complement tuples as
one word, and the figure 7 show when ℓ = 7 most tuple are higher frequency, and there are near
5K tuple’s frequency large than 255 and then uni 7-mer is nearly null.

re-distribution low frequency tuples We are re-distribute the low frequency (¡5) tuples to
higher ones randomly, with the the formula

νr
k = νk(1 + VL/VH) (25)
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Figure 6: νk and ν0
k

where we instead νk with the estimated ν̂k from Poissian, when k ≤ 5. And VL is
∑

K≤5 νk and
VH =

∑
k>5 νk, where for a high c, the low frequency part is very small when there are no seqeuncing

errors. The result show in Figure 8, there are a little bias between red and green lines.
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Figure 7: νk with different K-mer

real data experiment ℓ = 15, genome size 237.8K, coverage: 24.1, uni-kmer: 78.4K,
error ratio: 0.29, low freqeuncy tuples : 1.44M, total tuples: 4.88M
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Figure 8: re-distribution lower frequency to higher

19


	initial c=22/1
	nm distribution and estimation
	 k distribution 
	 determine nm from k 
	Expectation-maximization Algorithm 
	slight modification
	 the influence from the sequencing errors 
	Estimate genome size with sequencing errors

